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CONVERGENCE RESULTS FOR PSEUDOSPECTRAL 
APPROXIMATIONS OF HYPERBOLIC SYSTEMS 
BY A PENALTY-TYPE BOUNDARY TREATMENT 

DANIELE FUNARO AND DAVID GOTTLIEB 

ABSTRACT. In a previous paper we have presented a new method of impos- 
ing boundary conditions in the pseudospectral Chebyshev approximation of a 
scalar hyperbolic equation. The novel idea of the new method is to collocate 
the equation at the boundary points as well as in the inner grid points, using 
the boundary conditions as penalty terms. In this paper we extend the above 
boundary treatment to the case of pseudospectral approximations to general 
constant-coefficient hyperbolic systems of equations, and we provide error es- 
timates for the pseudospectral Legendre method. The same scheme can be 
implemented also in the general (even nonlinear) case. 

1. INTRODUCTION 

The importance of the treatment of boundary conditions, in the approxima- 
tion of hyperbolic systems of equations, is widely recognized. The pioneering 
works of Gustafsson, Kreiss, and Sundstrom [6] and Osher [7] provide the sta- 
bility theory for the implementation of boundary conditions in the framework 
of the finite difference method. In fact, the question of checking the stability of 
a difference scheme for initial-boundary value hyperbolic problems is reduced 
to an algebraic problem. 

The role of boundary conditions in spectral (or pseudospectral) methods is 
even more crucial. Spectral methods, being global in nature, are more sensitive 
to local treatments, such as boundary conditions, and therefore greater care 
must be taken in handling the boundaries. 

In [3] the authors introduced a new method of applying the boundary con- 
ditions in the pseudospectral Chebyshev approximation of a scalar hyperbolic 
equation. The novel idea is to collocate the differential equation not only at 
the inner grid points, but also at the boundary itself, making use of the fact 
that spectral derivatives can be obtained at all grid points including the bound- 
aries. Thus, the boundary conditions are introduced as penalty terms. In [3] 
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the stability of the scheme is shown for the scalar case, and the merits of the 
new treatment are discussed. 

The purpose of this paper is to extend the ideas presented in [3] to the case 
of hyperbolic systems of equations. We show how to implement the scheme for 
a general collocation method based on orthogonal polynomials. We also prove 
stability and show error estimates for the pseudospectral Legendre method ap- 
plied to constant-coefficient systems. The extension of this idea to the Cheby- 
shev method is trivial; however, it is more difficult to obtain similar convergence 
estimates. 

The paper is organized as follows. In ?2 we describe the method in the scalar 
case and prove error estimates for the pseudospectral Legendre method. In 
?3 we treat the case of the Legendre method applied to a system in diagonal 
form, where the unknowns are coupled via the boundary conditions. We derive 
error estimates for the constant-coefficient problem. In ?4, we show how to 
implement the method for systems in nondiagonal form. 

2. ESTIMATES FOR THE SCALAR EQUATION 

In this section we derive error estimates for the new pseudospectral Legendre 
approximation to a scalar hyperbolic constant-coefficient problem. Let U 
U(x, t) be the solution of 

(a) UI = a UX x E [- 1, 1],5 0 < t < T. 

(2.1) (b)U(lt)=h(t), 0<t<T, 

1(c) U(X, 0) =f(x), X E [- 1, 1], 
where h and f are given boundary and initial functions and a E R, a > 0. 

Let PN denote the space of algebraic polynomials of degree less than or 
equal to N. In the pseudospectral Legendre method we approximate U by 
v _ v(x, t), which is a PN-polynomial in the variable x for any 0 < t < T. 
This is done by demanding that v satisfies equation (2.1) (a) at the grid points 
xj (j = 1, ... N). The points xo = 1 > xl > ...> xNl > xN = -1, 
taken here in decreasing order, are the nodes of the Gauss-Lobatto quadrature 
formula, i.e., xj (j = 0, ... , N) are the extrema in [-1, 1] of the Nth-degree 
Legendre polynomial PN . 

The choice of this particular grid allows an accurate evaluation of integrals by 
summing over the grid values. Namely, let cow ( = 0, ... , N) be the weights 
of the Gauss-Lobatto formula; then for any polynomial p of degree at most 
2N - 1 the following equality holds (see, for instance, [2]): 

1 N 

(2.2) p dx= Ep(xj)cw. 
I=o 

In the following, we will set co = coo= ON = 2/N(N + 1) . 
Our new method differs from the classical one by the treatment of the bound- 

ary condition. The approximating polynomial v does not satisfy exactly the 
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boundary condition (2. 1) (b); instead, it satisfies the differential equation (2. 1) (a) 
at all the grid points with a penalty-type correction at the boundary. That is, v 
is a solution of 

(a) vt = avx at x = x, j = 1, ..., N, 

(2.3) (b) vt(l , t) = avx(l , t) - y(v(l , t) - h(t)), 

1 (c) V(X, 0) = f(xi), j = O. ..., N. 

The coefficient Y- YN > 0 in (2.3)(b) can be viewed as the amplitude of the 
boundary penalty term and will be specified later so that the stability of (2.3) is 
guaranteed. 

It is convenient to compare v (., t) with some PN-projection of the solution 
U(., t). To this end, we introduce two projection operators, denoted by IN 

and rIN' 

Definition 2.1. INU is the polynomial in PN that interpolates U at the points 
xj (j = O ..., N), i.e., INU(XI) = U(xj), j = O,. . .* N. 

Definition 2.2. I-N U is the polynomial in PN that is the best approximation 
of U in the H1 (- 1, 1) norm satisfying the condition HNU(?l) = U(? 1). 

Here, H7(-1, 1), 5 E R, is the usual Sobolev space with H0(-1, 1) = 

L2(-1, 1). 

In the next theorem we estimate the error E = HNU - v. We note that, as 

in the Chebyshev case (see [3]), y has to be proportional to N2 for stability. 

Theorem 2.1. Consider the scalar equation (2.1), and let v denote its pseudospec- 
tral approximation (2.3) depending on the boundary penalty amplitude y. Then, 
if y > a/co = IIN(N + 1)a, we have the error estimate 

(2.4) ZE2(x T)co + a] (E2(1t) +E2(-1,t)) dt 
1=0 

< exp(1) (E('Nf - lNf) 2(Xj)Wj + TJ : Q2(X ) dt ) 
k =0 =0 -] 

where Q = a[I-NUx - (-,NU)x]I 

Proof. Applying rIN to (2.1), one gets 

(rlNU)t = a(flNU)X + Q atx=xj, j=O, ... N. 
(2.5) (HINU)(l, t) = h(t), 0 < t < T, 

1 (rHNU)(xJ, O) = (rlNf)(xJ), j = 0O... N. 

Therefore, upon subtracting (2.3) from (2.5), we have the following error equa- 
tion: 

(a) Et =aEx+Q atx=xj, j=1, ..., N. 

(2.6) (b) Et(l, t) = aEx(1, t) + Q(1, t) - yE(1, t), 

1 (c) E(xj, ?) = (FINf-INf)(xJ), j = 0. . ., N. 
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Note that E is a polynomial of degree at most N. Multiplying (2.6)(a) by 
E(xj, t)woj (j = 1, ..., N), (2.6)(b) by E(1, t)coo, and summing, we get 
(using (2.2)): 

N N 

(2.7) 1 E(EtE)(xj, t)w j = a J EE dx + E (QE)(x1, t)w9; (2.7) ~ oj=O 

-ywoE2(1, t), O<t< T. 

Integration by parts yields 

N 

dt E E2(Xj, t)coj = (a - 2yco)E2(l 2t) - aE2(_, t) 
j=o 

N 

+ 2 E(QE)(xj, t)w1)j 

(2.8) 
j=O N 

< - a(E2(1, t) + E2(-1, t)) + 4 EE2 (Xj, t)wC1 
1=o 

N 

+ T EQ2 (Xj t) Coj O < t < T. 

j=o 

where we used the assumption a - 2yco < -a. Finally the Gronwall lemma 
yields (2.4). E 

Recall now that there exist two positive constants C1 and C2 such that one 
has, for any P E PN (see [1, p. 286]): 

(2.9) Cif p2dx < EP2(Xi) <C2 pdx. 
I j=0 

In addition, the following error estimates concerning the projectors IN and r'N 
can be found in [1, pp. 293 and 291]: 

(2.11) U - INUIIHP(-l, 1) < CN 
- 

UIIH(- 1 1) ' 
(2.10) 

~ ~~~VUEH a -1 5 1), ?a> 10< U< O 

2 1~~~~~~~~~~~~~~~ 

(2.11)~~| JU - NU11Hu(_1, I) < CN u1al UIIH'(-1, 1) 5 

VUEH a(-15 1), a> 1, O<# <a. 

Using the above inequalities, we can get an estimate of the error between the 
solution U and the new approximate v . 

Theorem 2.2. Let U E L 2(0, T; H7(-l, 1))nL??(0, T; Ha 7(-1, 1)), a> 1, 

be the solution of (2. 1). Let v be the solution of the pseudospectral scheme (2.3) 
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with y > a/co. Then we have the error bounds 

II(U - v)(. , T)11L2(_1 1) 

(2.12) < CNATu(v'II UIIL2(0 T;HG(-1 1)) + II U( T)11HG (-1,1) 

+ 11f 11H I ( , I) 

(2.13) (U - v)2(hl, t) dt) 

< CN1 (v'7IU1IIL2(0 , T;HG(-1, 1)) + I1fIHG- (-1, 1)) 

Proof. We begin by noting that (2.1 1) implies for Q = a[FINUx - (lN U) x 

(2.14) ggQIIL (_,1) - arINU - UIIH(-l 1) + allnINUX - UIIL2( 11) 

< CN1 II UIIHG( 1 1)' a> 1. 

Then, (2.12) is easily obtained by the previous theorem, by (2.9), (2.10), and 
by the triangle inequality: 

(2.15) IlLU - VIIL2(_ ,1) < IlU - r1N UIIL2(_ 1, l) + IIIN U - VIIL2(_ 1, 1) 

To show (2.13), it is sufficient to observe that, by definition, nNU coincides 
with U at x = 1 for any t, so that 

I T2 
(2.16) (HNU- U) (J1, t)dt = 0 < t < T, 

and then use the estimates shown above. E 

Note that the same results hold when a < 0 and the role of the boundary 
points x = 1 and x = -1 is interchanged. 

3. ERROR ANALYSIS FOR DIAGONAL SYSTEMS OF EQUATIONS 

Consider the hyperbolic system 

f (1) - A(') U(1) 
(3.1) 

XUt 
= x E [-1, 1], 0 < t < T 

(3.1) _U(2 A(2) U(2) 

where U(1) (x, t) is a vector function of k1 E N components and U(2) (x, t) is 
a vector function of k2 E N components, Vx E [-1, 1], Vt E [0, T], T > 0. 
In (3.1), A(1) is a k1 x kI constant matrix and A(2) is a k2 x k2 constant 

matrix. Since (3.1) is a hyperbolic system, we can assume that A(1) and A(2) 
are positive diagonal matrices. 

System (3.1) is subject to initial conditions 

(3.2) {U(2)(X ) o-fi U X [-l(0) 
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and it is coupled through the boundary conditions 

fu(1)(-l , t) = L U(2) (-1 , t) + g1 (t), 0<t<T 
(3.3) { U(2) ( 1 5t) = RU(1)(l , t) + g2(t) 

< t < T 

where fi2, gi (i = 1, 2) are given functions. Here, R and L are respectively 
k2 x k1 and k, x k2 matrices, which determine the reflection of the ingoing 
characteristic variables in terms of the outgoing ones at the boundaries. 

Let r and / be the norms of the operators R and L respectively, i.e., 

(3.4) r = IIRIIY(Rkl Rk2) / | = IILI L?(Rk2 ,Rkl) - 

We discuss the case in which the solution to (3.1), (3.2), (3.3) does not grow in 
time. This is assured by demanding that 

(3.5) 0<rl< 1. 

In the new collocation method we seek u(i)(x, t) E Rk x E [-1, 1], t E 
[O, T], i = 1, 2. The vectors u i = 1, 2, whose components are P - 
polynomials in the variable x, are determined by the following collocation 
scheme: 

(6) ) -A(l)u() atx=xj, j=O, ..., N- 1, 

0 u~l)(-lt) =-A(') u(1)(, t) 

(3.7) - F(1){u()(- 1 , t) - Lu(2)(- 1 , t) - g1 (t)}, 

u(2) ( 1 t) = A(2) u(2) (1 , t) -2) f{u(2) (1 t) - Ru(1)(1 , t) - g2(t)} 

(3.8) j=0O... ,N. 
U ( 2(Xj, O)j = f2x) 5-O ...,5 N. 

Here r(i), i = 1, 2, are positive-definite ki x ki diagonal matrices, which can 
be viewed as amplitudes of the boundary penalty terms, analogous to the role 
of y in the scalar case. These matrices will be specified later. Note that we 
took into account at the points x0 = 1 and XN = 1 both the equations and the 
boundary conditions. 

In order to study the convergence of the PN-approximations u(1) and u(2) 

to the exact solution U(') and U(2) when N tends to +oo, we introduce an 
auxiliary collocation scheme. Namely, we look for v(1) and v (2), such that 

' (1) -A(1)v(') at xx, j= , ...N- 1, 
(3.9) 1 

X t~1 j1..N 
* ' v~ (2) = A(2)V(2) at x =v(, t - F v j1, t) - U(1 , N. 

(3.10)~~ i v (1 t) -A(l)v(') (-1, t-(1) {v ( ) (- l t) U( l) (-1 t)},l 

v(2)(1 5 t) = A (2) V(2) (1 t) - r'(2)f V(2)(1 5 t) -U(2)(l t)} 
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( 3. 1 1 ) { v ( i) (xj,5 0) =f, (xi), j = O. . ,N 

V( (Xj, ?) =f2(Xj) i j=?,..., N. 

The advantage of considering (3.9), (3.10), (3.11) is that the new problem 
is fully decoupled into k1 + k2 independent scalar equations. Therefore, the 
analysis of ?2 will enable us to estimate the difference UW') - vYi), i = 1, 2. 
Thus, it remains to bound the difference UW -V W, i = 1, 2, due to the coupling 
at the boundaries. 

Theorem 3.1. Let d(') = u(i) - 0(i) i = 1, 2, where u(i) and v) are the 
solutions of (3.6)-(3.8) and (3.9)-(3.11), respectively. Let IF(i) = A(-)/@@, 
where wj =oo = CONy Then we have the estimate 

N 

E(r IIB(1)d(1)(x, T)112 + lIIB(2)d(2)(xj, T) II)co 

j=O 

(3. 12) < 2( 1 - ?r) II (l(0U _ V()1,t| 

+ {II(U(2) - V(2))(1 , t)112) dt, 

where B~') - [A~')', i = 1, 2. 

Proof. From (3.6)-(3.11) it is clear that the d(i) satisfy the equations 

c41)= A(1)d{1)at x ,=0.,Nl 

(3.13) { d,(2) _ A(2)d (2) atx=xj, j= l,... , N x 

(4 d(l) (-, t) =-A(') d(l)( , t) 

(3.14) 
- -F(') 

f{d(l)(-i,- t) - Ld(2)(-_, t) + LE(2)(-1_, t)} 
*|d(2)(1 5t) = A (2)d (2) (1 t) 

_r(2) d (2) (1, t) - Rd(1)(1 , t) + RE() (1 , t)} 

(3.15) { d(Id)1)(xj ,O) = 0 j = O.., ,N, 
(3.15) 

~~d(2(Xj , 0) = 05, = 0 , . .. , N, 

where E(') = U(- ) - v(i), = 1 , 2. The scalar analysis provides us with esti- 
mates of the errors E(i) a i 1, 2. Note that (3.3) has been used to eliminate 
U(1) (- 1 t) and U(2)(1 , t) 

Now, let D(i), i = 1, 2, be two diagonal positive-definite ki x ki matrices 
to be specified later. Multiplying the first set of equations in (3.13) and (3.14) 
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by (D(1)d(1))(xj, t)coj and summing over j = 0, ..., N, we get by (2.2) 
N 

(d (1) D (1)d (1))(xj , t) 0j 
j=o 

_ 
- lf (A ld~) D, I d ())(x , t) dx 

1 

(A( 2)d(1) - rD(l)d(2)(1) - (A)d(d)2l, t) 

2 ~~~~~~2 

- w(FO d12) - F RLd (2) 
, D(l)d(1))>(1, t) 

+ qco(1(')d(1) DD(1)d~)(1 -t) + I ,E(2)(_1 t)112 

for any O < q < 2. Similarly, we have 
N 

(3.17) (d (2) D (2)dI(2))D(x) 1] t)((tj 
j=o 

(A2)d (2) 5D(2)d (2))( )-+1 (A1(2)d (2) ) D(2)d (2) (-1 t) 

+((2)d (2) _ r ((2)Rd(l) D(2)d (2) )R(1 ( 1 , 

+ (r)d(2 ), D(2)d(2))(1 t) + D(1)( 2) L(2)( RE(1)(1 t)12 

Note that q D(l) , and D (2) are yet to be specified. We start by setting q= 
2(1 - v@-) . Recalling the hypotheses on F(i) 5 by adding (3.16) and (3.17), one 
obtains 

d t (11ld l)l2 + llv (2) l2] (Xj, t) Cj) 

' E 1 D\d(') 11- D((2)d dl ()() 

112 2 (2) 1(2)(2] 1,t 

(3.18) ~ <- ( [ d(')l _ 2~( RXtd(2) D( )d( 

+1 A 2D (2)d2 (2-112 t) 

(11 \/ E(H 1[ 2)D (2) 1, 11 t) 11 

+ 11 LE(~~2)(-1, 5t) 112) 
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At this point we want the two first terms in brackets on the right-hand side 
of (3.18) to be positive. This holds if we choose 

D(1) = (A(1))-Ir2 D(2) = (A-(2))-l 

Indeed, in this case the quantity 

r2Ild(1) 112 - 2VRi(Rd(l) , d(2)) + rlId (2) 112 

is positive in view of the straightforward inequality 

12 V(Rd1 ( d 2)d < 
IIRd()I2 + rl/d(2) 12 < r2Ild( 1II + rIlld( I2 

Similar arguments hold for the second term. Thus, we are left with the last 
term, which allows us to write the following inequality: 

+ (a [r|Bi(1)ad'((xj t) 11 + II|B 2)d (xi, t)112] ci) 

(3.19) V<)_ d , (IRE(/)( , t) 112 + rILE(2) (_ 1 t) 112) 

< rl1HH \/ I~)(1 t) ll2 + dE(2)(_ , t) l2) 
2(1 - rlr 

Finally, by integrating in time, we obtain (3.12). a 

Using the results of the previous section, we can finally prove our main con- 
vergence theorem. 

Theorem 3.2. Let U(i), i = 1, 2, be the solutions of (3.1), (3.2), (3.3), and let 
u(i), i = 1, 2, be the solutions of (3.6), (3.7), (3.8) with 

r7() = A(i)N(N + 1)/2V71. 

Then we have the following error estimate: 

(3.20) / 2 \ 1/2 

< CNl naT 1r a adU(i), i-i 2 
i= l C?~~Co([0, T]; H7 (- 1, ) 

where C depends only on 1 , r , a, and A('), i = 1,5 2. 



594 DANIELE FUNARO AND DAVID GOTTLIEB 

Proof. We first write U(i) - U(i) = U(i) - v) - d(i). Then a bound for each 
component U() - v(i), = 1, 2, is given by (2.12), while for d(i) we have 

( 2 )1/2 

(?d( B) (1 (2 T) 
L _ 1) 

1/2 2~~~~~1 
2~~~~~~~~~~~~~~~~~~ 

(3.21) < maXII[B ] B(I)(R' R,9 ( lB T)d()l) (, 

<?C(r,lI)max max {(a~'i))2 (fT juU(1) - v~l1lH2(1 , t) dt 

L211(2_, ()1(1 1)t) 

where < are the diagonal entries of i 1, 2, and we used Theorem 
3.1. Finally, the last term in (3.21) is estimated as in (2.13). E 

4. SUGGESTIONS FOR THE IMPLEMENTATION OF NONDIAGONAL SYSTEMS 

In this section we discuss the implementation of our new approach in the 
case of the general hyperbolic system 

(4.1) Ut = AUT X 

where U U(x, t) is a k-component vector and A is a constant k x k matrix 
with k1 negative eigenvalues and k2 positive eigenvalues (k = k< + k2). The 
following boundary conditions are imposed at x = -1: 

(4.2) (B11 Bl2) U(-1,Tt)= (hi( )), 

where B r ista kd xkg matrix, B12 isa ko xAk2 matrix, and hw isagiven kT - 
component vector. In addition, the following boundary conditions are imposed 
at xU==1: 
(4.2) (B 0 U(1, t) = 0 t) 

where B21 is a k2 x k1 matrix, B22 is a k2 x k2 matrix, and h2 is a given 
k2-component vector. 
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By hyperbolicity, there exists a nonsingular matrix 

T- T11 T128 
T(~T21 T22 

where Ti is a ki x kj matrix, such that the change of variables U = TU 
diagonalizes the system (4.1). Thus, we get 

au a~~7~u / -A(') 0 aOU (4.4) 1at T AT = ( A(2) aX 

where U-(U~1), U(2)) and the A('), i = 1, 2, have been defined in ?3. 
The boundary conditions are respectively transformed as follows: 

(4.5) (B., TI + B12T21) U(1)(-1 , t) + (B, T,2 + B2T22)U(2)(-1 , t) = hi ( 

(4.6) (B2IT11 +B22T21)U (1(1, t) + (B2ITI2 +B22T22)U(2)(1, t) = h2(t). 

Therefore, (4.2) and (4.3) are equivalent to (3.3) if and only if the matrices 

B,1 T,, + B12T21 and B21 T12 + B22T22 are invertible. In this case we have: 

L = -(B17 T11 + B12T21) (B11 T12 + B12T22), 

R = -(B2l T2 +B22T22)1 (B21T11 +B22T21) , 

g, = (B11T1, +B12T21 )7'h, g2= (B21T12 +B22T22)1Ih2. 

Thus, assumption (3.5) is transferred to the Bij . 
We would like to show how to apply the scheme (3.9)-(3.1 1) directly to the 

system (4.1)-(4.3). According to Theorem 3.2 we set IF(') = -fA(i), i = 1, 2, 
where fi = N(N + 1)/2V'H. We also set (denoting by u-(u(i), u(2)) the 
approximation to U) 

(x t) (ut)(x, t)- LU(2)(X t)-gI(t)) 

( -R I)u(xX, t) - (gl (t). 

Thus, (3.1)-(3.3) can be written in the form 

a. (xj, t) = A U(Xj, t) + O3Nj A( )_(-1, t) 

- lJoj A( )0 ^ 1 t), j = ... N. 

where 

An d A K0 A o2) e dA=A +A 

and 6,ij iS the Kronecker delta. 
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Let us now define iu = Tu. The function iu satisfies 

(4.8) -xt 
a (xj, t) + 83 j (TA )T")T_(-l, t) 

(4.8) a~j(1 t)= -x, Nj / - floj (TA(+) T 1) TW_(W t) j = O5. . . 
, N. 

Defining B=T(R ) I T , we get 

(4.9) TE= BPu- T~ 
g2 

Finally, taking A1) - TA(')T-' and substituting in (4.8), we obtain the pseu- 
dospectral scheme for approximating (4.1)-(4.3), namely 

at(xi , t) =2 A @ (Xj I t) + fl5Nji ') [BU(- I1, t) - T (g0)1t) 
(4.10) L9ta 2 

i+)j [BU( 1, t) -T (gl (t)] , 0 .... N . 

This is equivalent to collocating the equation (4.1) at all the points with 
some suitable penalty terms, derived from the boundary conditions, added at 
the points x = ? 1 . It is clear that the same convergence estimates of Theorem 
3.2 also apply for the error U - u = T(U - u) . 
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